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A Bayesian Comparison of Different

Classes of Dynamic Models Us i ng

Emp irica l Data*

R. L. Kashyapt

Abstract

This paper deals with the Bayesian methods of comparing different types

of dynamica l structures for representing the g iven set of observations.

Specifically, given that a given process y() obeys one of r distinct

stochastic difference equations each i nvolving a vector of unknown parameters,

we compute the posterior probability that a set of observations {y(l),... y(N)}

obey the ith equation , after making suitable assumptions about the prior

probability distribution of the parameters in each class. The difference

equations can be nonlinear in the variable y but should be linear in the parameter

vector in it. Once the posterior probabi lity is known, we can find a decision

rule to choose between the various structures so as to minimize the average

va l ue of a loss function. The optimum decision rule is asymptotically consistent

and gives a quantitative explanation for the ‘principle of parsimony ’ often used

in the construction of models from empirica l data . The decision rule answers

a wide variety of questions such as the advisability of a nonlinear transforma-

tion of data , the limitations of a model which yields a perfect fit to the data

(i.e., zero residua l variance) etc. The method can be used not only to compare

different types of structures but also to determ i ne a reliable estimate of spectra l

density of process. We compare the method in detail with the hypothesis testing

method , maximum entropy spectra l analysis method and other methods and

give a number of illustrative examples .

*Thls work was supported by Air Force Office of Scientific Research under Grant
71i— 2661.
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I .  INTR ODUCT I ON

For determining an appropriate representation for a given time series , one

usually assumes a certain structure i nvolving a set of parameters and the va l ues

• of these parameters are estimated from the given data . For many of the geo-

phys i cal or hydro logica l time series , the phys i cs of the problem Is not well

understood to specify a unique structure for the stochastic process. In these

cases, one of the main reasons for the construction of models is for understand—

• ing the dynamics of the process. Hence instead of restricting ourselves to one

• particular structure like autoreg ressive structure , a linear comb i nation of

orthogona l polynomials in time t or a fourier series , we should endeavor to

quantitatively compare the validity of these widely different structures for repre-

senting the given data. For every structure , we should try to determine the

probability that the given set of measurements could have come f rom that struc—

ture and choose that structure which has the hi ghest probability.

We will first clarify the notion of structure and model because these

words are used in widely differing contexts. Consider a stochastic process

y(.) e ywhich obeys a stochastic difference equation (1.1).
• 

f~ (y(t)) = g 1 (t,y (t-l),...,y(t-m~),Q) + w(t), (1.1)

where etc. obey the following assumptions (Al) - (A3).

• (Al) f~(y) is any differen tiable function of y such as ln y + C, y + C, y2 + C ,

etc.; f~: y~~~R.

The constant C is chosen so that the emp irica l mean of f1 (y) with the givenN
• set of observations ~(N) = (y(l),...,y(N)) is zero, i.e., C = (1/N) ~ f~(y(t)).

n t=l
• (A2) Let 0 (e

~
,...,e ) c R ‘~ is any function linear in 0, but not

necessarily linear in y(t-l), t etc. m
~ 

is any integer greater than or

• equa l to zero.

• g i : r x 
m 1 x R ’ + R.
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= {l ,2,3,...}.

when m
~ 

= 0, the function g 1 is defined as a map 9 1 : t x R + R.

The parameters m~ and n 1 characterizing the function g 1 will be of particular Interest

later in develop i ng decision rules .

(A3){w(’)}is a sequence of I.I.D. variables with distribution N(O,p) and w(t) Is

• i ndependent of y(t-j), j > 1 , 0 < p  < 
~~~
.

A model is a 4 tuple {f1, g 1, O ,p} uniquely associated with the difference

eq. (1.1). A process y() is said to obey a model If1, g
~
, 0,p} if it obeys

• the associated difference equation (1.1).

Let C 1 be a class of models having the same functions f and g but differing

in 0 or p.

C 1 ~ (f1,g 1,m 3 , n1, ~
}

~~~~~~~ ~~~~ 
O ,p): 0 c(~~ , 0 < p  < ~

}, (1.2)

where

= {e = ~~~~~~~~~~~ e~ ,‘ 0 V~, Q £ R
i ) (1.3)

C. is labelled as the ith class or ith structure . Two classes C. and C~ are said

to be mutually excl us i ve if they differ in the functions f or g, in a nontrivial

way i.e., there is no process wh i ch obeys a model in C~ as well as a model in

C..
j

Given r mutuall y excl us i ve classes or structures C 1,~ ..,C~. and a set of

observations ~ = fy(1),. ..,y(N)) our intention is to develop a decision rule to

assign the observation set to one of the classes among C 1, I 1,.. .,r so as to

minimize a suitable criterion function and also determine the probability of

error associated with the decision . The loss function can be chosen to reflect

the particular needs of the prob l em, such as forecasting or estimation of

spectral density .
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We recall that the only restriction on the classes C1 Is that the functions

i = 1 ,2,... must be linea r in 0. Hence the theory allows us to simu l taneously

compare widely different structures or classes such as (i) the class of autoregressive

(AR) models of order m , in y, (ii) the class of AR models of order m2 in In y, (iii)

the class of models made of m
3 
orthogonal pol ynomials in the varIable t, (iv) class

of harmonic models involving certain frequencies , us i ng the same data.

Problems of this type are referred to as compound hypothesis testing in the

statistica l literature [2] and there is no genera l theory to handle them. There are

specific tests for comparing specific pa i rs of ciasses such as classes of auto—

regressive models of 2 differen t orders. Even here the solution is unsatisfactory

for a number of reasons such as (i) the choice of arbitrary quantities like

significance l evels (ii) lack of any measure of the type II error i nvol ved, (the

chosen significance l evel places an upperbound on the probability of type i error)

(iii) the intransitivity of the decision rule and its lack of any optimality

properties etc. There are also many other adhoc rules such as like lihood ratio

rule (21 or MAIAC [3] which do not usually possess asymptotic consistency or g ive
I

a measure of the probability of error of the decision .

Some common prob lems occurring in the anal ysis of emp irica l time series are

reall y prob l ems regarding the appropriateness of the different types of structure

for explaining the data . It is being increasingly realized that the traditiona l

methods of spectra l anal ysis i nvolving the use of window functions like those of 
- •

Bartlett or Hamming (6] often lead to misleading inferences. To overcome such -
•

t objections , geophysicists use a special method of spectra l analysis known as maximum

entropy spectra l analysis (MESA) whose inferences have greater reliability than

those of the traditiona l methods. The method effectively assumes an autor~~ressIve

(AR) structure for the process. If we pose the problem as one of comparing

different classes of models hav i ng diffe rent orders of AR models as done here ,

- • - 
--
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we will obtain a solution which overcomes many of the disadvantages of the MESA

method, without sacrificing the advantages. Moreover, we can choose the decision

rule to minimize a loss function wh i ch explicitly reflects the needs in the con-

text namely minimizing the errors in the estimation of spectra l density of the

process. Similar problems are faced in the spectral ana l ysis as applied to the

processing of acoustic signals also [7].

In our paper we will first compute P(C
~ I~

), the posterior probability of

• the given data having been generated by some model in C~, for every i = l ,...,r,

assuming a suitable prior distribution for the classes and the various parameters.

Subsequently we will derive optima l decision rules accord i ng to various types of

criteria and discuss the asymptotic consistency of the decision rule. We wIll

give many types of examples such as (I) whether a nonlinear transformation of

the data will yield a better representation of the data , (ii) when is a

polynomial fit of the data (or a fourier series representation of the data)

with zero residua l variance inferior to a relatively small order autoregressive

representation etc., and point out the superiority of the method ~u existing

methods of comparison like hypothesis testing [1 ,2], maximum entropy spectra l

anal ysis [4,5,10], etc.

Even if all the classes have the same prior probability , the posterior

probability of class C~ be i ng the correct class for the observation set ~(N)

hav i ng N observations is , unde r appropriate assumptions

exp(0.5 h.(~ (N) ) ]
P (C~ I~ (N) )  = — 

r , i = 1 ,... ,r (1.4)

~ exp[O.5 hk(~
(N))]

k=l

h~(~ (N)) = 2N ln — (N—m i ) ln(p 1 + (Pfi P i )/N ) — n 1 in N

- m ln p + m. - (1/p .) 
~ 

(f (t)) 2 
+ 0(1/N) (1.5)

I fi t=l
I = l ,2,...,r

dl
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where l~i f~ is the empirica l mean of the function ln[d f~ (y)/dy]JY y(t) ,

is the empirical variance of f~(y(t)) and p~ is the res i dua l variance . The

expression (1.5) clearly brings out the adverse effects of dealing with classes

with large n 1, i.e., having too many parameters to be estimated . The role

played by the lag variable m. and the number of estimated parameters n 1 is quite

differen t in genera l even though in the widely discussed case of autoregressive

processes m~ = n.,. Further , even if p 1 = 0, as in polynomial models,

• 
P(C .I~ (N)) is still finite . These and other features will be discussed

extens i vely in the subsequent sections.

II. ASSUMPT I ONS

For simplicity we will denote a class C~ by the 4 tuple [f., g1, m~
, n 1 ].

The suppressed term@. will be mentioned wherever necessary. Further f~(t) ~

f1 (y(t)). Similarl y the function g. will be written as g 1 (t,O) suppressing the

other arguments . Moreover g
~ 

can be written as:

g 1 (t,O ) = (z
~ 
(t_l )~)

T
~, where z1 is i ndependent of ~

zJ (t_l) = •y0g~ 
(t ,~ ) ,  ti~ 

— vector

We consider r classes C~, t = l,...,r,C 1 = 1~ ’ ~~~~ m~, n i l where and

obey the conditions (Al) - (A3). We will make the following additiona l assumptions

on the functions f, g etc.

(A4) The functions f. and f~ and g. and g. obey at least one of the following

conditions for every possible pair (i ,J), i � j, i ,j = l ,...,r

( I )  f .(y ) ~ kf.(y) + C for any k,C and almost all y
• .1

(ii) For every 0 c 
~~~~~~ 

there does not exist a ~~
‘ 
c satisfying the

following relation

g 1 (t,y(t—l),. .. ,y(t—m 1 ),O) g
~ (t

,y(t—1),. . .~~ (t— m~)~O ’)

‘I

_ _ _ _ _ _ _ _ _ _ _
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(AS) If a process y(.) belongs to one of the classes C~ , i = l ,2,...,r, then
N

El /N ~ z.(t—l)zT(t—l)] is finite and positive definite for all N and
t m 1+l I

I = l , . . . ,r.

We need the following assumptions regarding the prior probability distri—

bution of 0 and p and the probability distribution of the initial conditions for

eq. (1.1).

(A6) Let x(t) = f.(y(t)). The m. initial va l ues y (J) ,...,y(m~) of a process

y(.) obeying any model in C~ obeys the follow i ng normal density

p(x(l) ,...,x(m i )) — N [Q J R~]

where Q is the nul 1 . vector of dimension m. and is a m~xm. covar iance matrix.

(A7) If y(.) obeys a model in C 1 involving m 1 lagged variables , then the prior

• density of 0 and p obeys the following relation :

p (~,PIy (l),...,y(m~),C~) = p(.~,PIC~)

(A8) The variable p has the following probability dens i ty :p (pJC 1) = a/p , a > O}val id

for all I.

(A9) The variable 0 c1i~. has the following conditional prior density given p:

• p(0(p,C 1 ) - N (eo1,so~
p)

where 
~Oi 

is a

(A1O)The prior probability of class C~ is P(C 1), I = l ,2,...,r , 0 < P(c
~
) < 1 ,

£~ P(c.) = 1.=1 u
We will discuss the assumptions. The assumption (A4) and condition (1.3)

are sufficient for the classes C 1~ • •~~
Cr to be mutually excl us i ve, i.e., there

does not exist a process y(.) which obeys 2 different models in 2 different

classes. (A5) is needed for the existence of the matrices occurring in the

optima l decision function . To understand (A6) and (A7), we should note that we

J 1

o d:an~~~ssumPti::ab::t tbe statIonar;tY :f the PrOc:sSYObeYIn~~

a1

~~~~

~J
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the observation set Is generated as follows: y(1),...,y(m1) act as Initial

conditions. Based on y(l),. .. ,y(m~) and w(m1+l), y(m1+l) is generated from

(1. 1), and y(t), t > m~+l are generated recursively us i ng (1.1). Clearly the

initial conditions y(l) .. .,y(m1) cannot throw any light on the parameters Q and

p which characterize that particular model in C 1 obeyed by y(). ThIs statement

is the assumption (A7).

The assumption (A3) yields the conditiona l probability density p(y(m1+l),...,

• y(N)Iy (l),...,y(m.)O,p,C.) as shown below. This expression in conjunction with

• (A6) and (A7) yields the joint probability density of all the observations

namely p(y(l),...,y(N)~0,p,C). The deta ils are indicated below.

p (x~ (m~-i- l ) , . . . ,x .~ (N) x1 (1),... ,x1 (m1
) ,O ,p,C 1 )

N

= IT p(x1 (t)~x.(t—l ),...,x1
( l ) , 6,p,C), by (A3)

• t=m .+l I

H 2
= II exp[—l/2p (x~(t) 

— g
~

(t ,0)) 1, by (A3) (2.1)
• t=m.+l /2irp

Transforming the variables x into y by the relation x
~
(t) = f

~
(y(t)), (2.1)

yields :

p(y (m.+l) , .  . . ,y(N) jy(l) , .  . . ,y(m 1 ) ,0 ,P, C~ )

-
• N

= ii (f (t)/v’2irp)exp (-1/2p (f.(y(t)) - g~ (t,~ )) 2], (2.2)
t m

~
+l I I

where f (t) = (d f3 (y)/dy)~y = y(t)

p (y(l),...,y(m~)IO~P,C~) = p(y(l),...,y(m~)IC 1 ) ,  by (A7),
m

• 
~~ f

i (t)

= ~=~/ 112 exp(- (1/2)Il (f~
(l),...,fi (mi ) II 2 ~], by (A6)

• (2w) (det R 1) (2.3)

Multiply ing the expressions (2.2) and (2.3) yields the required density

p(y(l),. ..,y( N) 8,p,C 1 ). 

—•-- •~~~~~~~~~~ -- - • - - •—•- -• • • •  

~~- -•-- •. • -
~~~~
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The prior dens i ty of ~ given p in (A9) is so chosen that the posterior

density p(0Ip,~ ,C 1) Is also GaussIan. There is an extensive literature on

the choice of the prior density of p . The density p(p) given in (A8) Is commonly

used in statistIca l literature and can be defended on many different grounds [8].

However it is called improper sincefp(p)dp does not exist for a1 — 0. But in

computing the posterior dens i ty, we can allow the limit a1 to be zero.

We will offer some suggestions for the choice of@01 and ~~~ 
occurring

in the prior dens i ty p (9jp,C
~
). The only guideline available for the choi ce

of is that it be relatively large in view of the great initial uncertainty

regard i ng the va l ue of 0 appropriate for the g i ven data . Even though the effect

of 
~~~~~~ 

and ~~ are asymptot i cally insignificant on the optimal decision , still

the arbitrary choi ce of 001 and S0~ for various i may make the computation of

the p(C
~k) 

more cumbersome than it need be. Accordingly we propose that the

following choice for S0~, i = 1 ,.. .,r.
N T(A l l )  S,~. = [ l/N— m

~ ~ z 1 ( t—l )z 1 ( t—l ) ]
I t m . +l

The cho ice in (Al l )  is unconventiona l in the Bayes ian literature sInce it

depends on the observations. However, we w i ll show later that such a choice

implies the following expression for the posterior variance of ~ given ~ and P

Var [8J~,p,C 1 ] ~ ~ ~oi
/(P1 m

~
+l) (2.4)

our choi ce is reasonable since ~0~p Is much larger than the posterior variance

S 1p. Any other choice for the S~~ would have made the expression for S 1 more

complicated than the one in (2.4) .

Next let us turn our attention to the choice of the vector 0i~ 
occurr i ng

In p (eIp ,C~). The obv ious cho ice for i s the n u l l  vector~stated In (Al2).

(A1 2) 10~~~~,01T (n1—vector)

It is important to realize that (Al2) is val id only if f 1 ( )  Is chosen
N

as stated in (Al) i.e., 1/N ~ f1 (y(t)) 0. Otherwise , (A12) wl l l be Inconsistent
t—i

with the fact that mean of w ( - )  Is zero In eq. (1.1).
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Finally consider the covariance matrix 
~ 

occurr ing in (A6) i.e., the

probability density of the initial conditions y(l),...,y(m.). The effect of

this term on the fina l decision rule is not strong . Hence to simplify the

computation , we make the assumption (Al3).

(A 1 3) 
~i 

= nfl!

where Pfj = empirical variance of f~(y(t)).

III. THE POSTERIOR PROBABILITY P(C
~k)

• Let ~ = {y(l),...,y(N)}

• P(C .l~ ) = p(~IC~
) P(C

~
)/p(

~
)

-

- 

= dp I d fe~ p(~ I~
,p,C i )pLo,pIC~

)P(Ci )/p(~
) (3.1)

The expression for p(~ J0 ,p,C 1 ) has been derived in section II. p (
~ ,PIC i) is

available from assumptions (A8) and (A9). Hence the integration in (3.1) can

• be performed as ind icated in the appendix 1 l ead i ng to the following theorem 1.

Theorem 1: Under the assumptions (Al)-(Al3) ,the posterior probability P(C 1~~)

has the following form

P[C~ I~ ] = K exp (0.5 h~
(
~

) ]

where

r
K =  i/Iexp (O.5 h~(~)]

= 2N ln~~t- (N—m i ) ln (p1 + (p fi~
p

i )/N)

+ 2 in P(C i ) 
- n 1 In N - m

1 
in 

~f i 
+ G 1 (m1) + 0(1/N)

G
1 (m.) - m. -(1/P f 1) (f~ (t))

2
• • I I t—l

p
1 
= l/(N—m .) ~ (f i (t)~~T(

t_ l)
~*)

2

t m 1+l

~~~~~~~~~~~~~~~~~ — _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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N N
~ ~1 (t)~~(t~~)1~ ~ z1 (t—l)f 1 (t)t=m1+l t—m 1+l

ln ff 

N 

f~(t), f1 (t) = d fi (Y)/dyIy y(t)

Pf1 — (i/N) I (f
~
(y(t))2 ~ emp irica l variance of

t= I

A proof of Theorem I is In appendix 1.

Comment 1: An expression for the P(C1 )~~(N)) without the assumptions (All)-

(Al3) regarding the parameters of prior distribution is g iven In l emma 1 in

appendix 1. Obvious ly it Is computationally more complicated .

Comment 2: E[G1 (m.)~C.] = 0

Variance [G1 (m.)IC.] 2m .

Hence G 1 (m.) is of the order O(Im.). While comparIng 2 classes hav i ng

different values of m., the term 61 (m1) does not make much difference 
In compari-

son with other terms and hence can be neglected when N is large .

Coruinent 3: The model (f1, g 1, O~, p~) is the best fitt ing model in the class

C~ for the given data E . Alternatively, if ~ obeys some (unknown ) model (f

9~’ 
0, p) in C 1, then 0~ and p~ are the Bayesian estimates of 0 and p.

We will discus s many other features of the posterior probability function

P(c1
~~

) in section V.

IV. OPTIMAL DECISION RULE AND THEIR CONSISTENCY

• 1. ~ptima 1 Decision Rules:

Let d(~(N)) be a decision rule where d is a map:

d: -, {C1, .. ,C~}

1
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Cons i der a loss function L which reflects the cost of wrong ass i gnment

of the observation set ~ to a class C~ using the rule.

L ( C
~
,d (C) = C~) = 0 if C~ 

=

= w1~ > 0, if C 1 ~ C~

Our intention is to choose the decision rule to minimize the average va l ue of

the loss function L, i.e., minimize J(d)

-•  - •  
J(d)= E[L(C.,d ( C ) ) ]

r
= ~ P( C .) f L(C.,d (C))P (CPC.)dICI

• 1=1 I I

or

r
J(d(C) = C~) = f(

~~
w
~
P(c
~
k))P(C) d I C I

The optimum decision rule is

d*(C) = Ck 
= Argument Minimum ~ w 1~P(C1~C) (4.1)

C.c{C1,...,C }  =1 
-

The loss function or ,in particu lar ,the wei ghts ~~ can be chosen to reflect

the particular needs of the prob l em. If we are interested in minimizing the

probabili ty of error in the assignment of class to C, the cho i ce of w1~ is

w 1. = 0 If I j

= I i f I ,
~ 
j

In that case, the optimum decision rule is;

d*(C) = Ck = Argument[Maximum P(c 1~C)] (4.2)
4 C.c{C1,...,er}

i.e. The decision rule assi gns C to the class having the highest posterior

probabili ty .

Probability of error of the optima l decision rule (4.2) = fl—Max P(C~IC)]Cj 
(4.3)

On the other hand , If our sole interest In class selection Is to obtain a

• reliable estimate of spectral density, then we should choose W
1~ 

as fo l lows

_ _ _  
_ _  ~~ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • - —- -  ~-- - - - - - - - •------ •
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W 1j dw(ln S
~
(w) — in s~(w))

WN

where Si (w) is the “best” estimate of the spectra l density of the process based

on C given that the process C belongs to class C 1. In that case, the optimum

decision rule (4.1) simplIfies

= C~ if (ln P(C~ IC)-H)
2 < (l nP ( C

~
IC)—H)

2 V I 
~ 
j, (4.4)

with
r

• H = 
~ P ( C~ IC) lnP (C 1 IC) 

(~•5)
1=1

The 2 illustrations should be sufficient to revea l the power of the decision

rule to reflect the needs of the particular prob l em.

2. Consistency of the Decision Rule:

We will show that the optimum decision rule in (4.2) is asymptotically con-

sistent. The consistency of other optimum decision rules such as (4.1*) can be

• established in a similar manner. Without any loss of generality , let us consider

the comparison of only 2 classes C1 and C2. If the process y(~) comes from some

(unknown) model in class C2, then we will show that P(C2IC (N))/P(C1 IC (N)) tends

to + as N tends to infinity showing that the decision rule correctly class I-

fies the observation set. A precise expression for the P(C2IC(N))/P(C1 IC (N)) is

given In the following theorem 2.

We should emphasize that the asymptotic behavior of P(C2!C(N))/P(C1 IC (N)) when

• C2 is the correct class may be quite different from the asymptotic behavior of

when C 1 is the correct class.

Theorem 2: Cons i der a pair of mutuall y excl us i ve classes C 1 and C2, C 1

{f1,g ,m 1,n 1,4~ 1 } under the assumptions (Al)-(Al3) . Assume that the g i ven

process y(-) obeys a model {f2,g2,02,p2} E C2 where 02 and p2 are unknown,

p
2 

> O•

_ _  - i
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Case (i) Let f1 — f2, (4.6)

> n
2 (4.7)

For every o’c4~~, there exists a 0 ~ R so that (4.8) Is satisfied.

g 1 (t ,o) 
= g2(t ,o ’ )  (4.8)

Then

Lim (P(C2IC (N))/P(C,IC(N))]”~~~
i exp((n1

_n
2)/2J (4.9)

• Case (ii) f
1 f2, but n1, n2 and g

1 
and g2 do not obey either (4 .7) or (4 .8).

Then

Lim [P(C
2IC (N))/P(C1 JC (N))]

1’
~ k2 > 1 (4.10)

Case (iii) f1 ~ f2, then redefine the variable y so that f1 (y) — y +

relabel f2(y) as f(y). Assume f() obeys the following assumption (Bl).

(BI) If f(y) is norma), then

E((y—~)
2] > E[(f(y)-?(y))2]/exp(2E ln f’(y)]

where y and ?(y) stand for mathematica l expectations of y and f(y) and f’ is

the derivative of f(y).

Then the limit given in (4.10) is also valid. Q.E.D.

The theorem is proved in appendix 2.

The assumption (Bl) appears to be obeyed by most differentiable functions

such as f(y) ~ in y + k3, f(y) = y
2 
+ k etc. Sti ll we have stated it as

assumption since we do not have a proof of it.

• Case (I) is valid for a pair of classes C1 and C2 where C2 is obta i ned from

• C 1 after setting certain components of the parameter vector 0 In C 1 to zero, and

• 
- the true process obeys C2. A common Illustration Is C2 in a class of AR models

of order n2 and C 1 is a class of AR mode ls of order n 1, n 1 
> n2, with the correct

model belong ing to C2. In such a case , theorem 2 roughly states
n f l  fl nP(C 2JC (N))/P(C1 JF~(N) )  - exp ( 2 

. in N) — N l 2 

~~~~~~~~~ --— — - -~~~~~~~~- - - •--•-—~~--•--•— • -•- • • • • •• • -• -
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_ (fl1 ’fl2)/2or posterior error probability ~ 
P(C

1 IC (N)) = N (4.11)

In all other cases, covered by Cases (ii) and (iii)

• P(c2IC(N))/P(c1 IC (N)) - k~, k2 > I

or posterior error probability P(C1 IC(N)) 
- k2

N (4.12)

Eq. (4.11) clearly illustrates the empirically known fact that It is easier to

distinguish 2 classes with entirely different structures , coming under Cases

(ii) or (iii) than to discriminate between 2 classes with similar structures

where the structure of the difference equation in C2, the correct class can

be obtained from that of C 1 by Setting a few parameters in It to zero, i.e., it

is difficult to distinguish the correct class C2 from the higher order class

C 1 . Note that if C
1 

and C2 have similar structures , but n 1 
< n2, then we have

an examp le of Case (I) and the error probability decays exponentially.

V. DI SCU SS ION AND COMPAR I SON

1. Main Characteristics of the Decision Rule:

We will highli ght some of the i mportant features of our decision rules .

• Most of these features are absent in the decision rules based on hypothesis

testing and other methods which will be discussed subsequentl y.

(P1) The decision rule can compare simu l taneously many classes obey i ng the

conditions in Sections I and II.

(P2) The decision rule is transitive , i.e., Let C 1~
- C~ denote that in corn-

paring the classes C. and ~~ the decision rule prefers C 1 to C~. Then C 1 ~ C2

and C2> C
3 
.=>C 1 

‘
~ C

3 
prov i ded all the classes are equiprobable.

(P3) The decision rule is asymptot i call y consistent , i.e., whIle comparing

2 classes C 1 and C2 based on the observation set C(N), then u r n  P(C2IE(N))/

P ( C
1 IC (N)) -~~ if the observation Set comes from some (unknown )niember In C2 and

— (n
1 -n2)/2• the error probability P(C 1 (C(N)) decays at least as fast as N if

n 1 > n2 or k2
N where k2 > 1.
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(P4) The decision rule Is optimal in the sense that it minimizes a

suitable loss function which reflects the needs of the particular problem.

(P5) An explicit expression is available for the probability of error

in the decision given by the rule.

(P6) The only arbitrary quantities appearing in the decision rule are

the prior probabilities of the classes . There are no other arbitrary quantIties

like significance l evels. The effect of the assumption about the prior probabili-

ties is asymptoticall y negligible unlike the si gnificance levels used In the

hypothesis testing methods. Typi cally the prior probabilities of the classes

• can be assumed to be equal.

(P7) The roles played by m. and n~ in the decision rules are quite

different. The contribution of terms involving m 1 to ln P(Ci (C) is 0(1) where

as the contribution of terms i nvolving n
1 

is O(ln N).

(P8) The posterior probability P(C1 IC) i nvolves a term expI—n
~ 

in N] even

if all the r classes are a priori , equiprobable. When we are comparing 2 classes

C 1, i = 1 ,2 such that they y ield the same va l ue of and ln f , I = 1,2,

the posterior probability of the class having smaller n~ will tend to 1 as N tends

to infinity . This is a quantitative proof of the “principle of parsimony” wh i ch

states that if 2 models explain the same data (i.e., have same p), the model

Involving smaller number of estimated parameters has a higher plausibility of

being the correct model of the process than the other model.

(P9) The decision rule for comparing classes is valid even if one of the

members of a class yields a zero residua l variance (i.e., p 1 — 0) with the given

data. This is possible because p always appears in the decision rule in the

form ln[p + (Pf -P) /N]. Hence even If p is zero or very small , ln [p + (Pf-P)/N]

is still finite . This property Is very useful In comparing stochastic models

l ike autoregressive models involving a small number of parameters with polynomIal

bi
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or fourier series models wh i ch i nvo l ve a lar ge number of parameters , but yield

low residua l variance.

2. Comparison with the Hypothesis Testing Approach:

This approach does not possess most of the properties (P2)-(P9). The

hypothesis testing approach is usually des i gned to test whether certain com-

ponents of vector 0 in the difference equation of form (1.1) are not signifi-

cantly diffe rent from zero (hypothesis H0 or null hypothesis) or the contrary

(hypothesis H1 ). Consequently the method can be used to compare only 2 classes

at a time and these classes form a small subset of the classes mentioned in

(P1). A typ i cal application is when eq. (1.1) is a n 1 order autoregressive

(AR) equation and the null hypothesis is that the given process y(~) obeys

a n2 order AR process, n2 < n1, i.e. the null hypothesis is that the coefficients

of y(t-n2+l),...,y(t—n 1) in (1.1) are all zero. Even here, we will show in

example 1* that the decision rule is not always transitive (property P2) and the

• decision rule is not always asymptot i call y consistent (property P2). HypothesIs

testing is routinely used in prob l ems where the danger of rejecting H0 when H0
is true (type I error) is very much greater than accepting 11

o when 
110 is not

true (type II error). The decision rule is designed to place an upper limit on

the probability of type I error , but no measure of the type II error is available

• (property P5). Thus the decision rule is i nappropriate for problems when both

• types of errors are important. The decision rule I nvol ves an arbitrary parameter

like significance l evel (I.e., probability of type I error allowed), (property

• P6). In genera l , the decision rule Is not optimal in the sense that any

specific criterion function is minimized (property P4). Further the hypothesis

testing cannot handle a relativel y simp le comparison problem such as whether

norma l distribution or log norma l distr ibution Is appropriate for representing k
the g i ven data or whether an autoregressive process or a polynomIal fit (or

Ii. I • - •-• • • • • ---- •-•• • • • • — • • - - - • • • - • • - - • -•---—--- ~-----—-• ---_-- -—



~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~ ---- ~~~~~~~

18

• orthogona l function) is appropriate for representing the given data (property

P9). Examples 1-li bring out the limitation s of the hypothesis testing approach .

3. Other Ad-Hoc Procedures:

There are many adhoc procedures for comparing several classes of model. The

cr iterion MA IAC (3], is used for comparing classes of autoregressive models of

different orders . For each class , we compute a1 (C) 
= —N ln - 2n~ where

= residua l variance of the best fitting model in class C
~

number of parameters to be estimated .

Chosen cl ass i s C . = Argument max (a1 (C)1I C i

Here there is no distinction between m. and n.,. The term —2n . is i nserted into
I I I

the decision function using certain ideas of information theory, but there seems

to be no particular reason for the factor 2. The decision rule is transitive .

However , the decision rule has no optimality property. We have no Idea of the

probability of error of the decision rule. Most of the examples 1-4 are outside

the scope of this rule. In particular , the rule cannot be used to compare classes

in which one of the models such as a model with n orthogonal polynomials In t

gives zero residua l variance for the data since a 1 (C) =

One can show that the use of decision rule is equiva l ent to the use of

hypothesis testing procedure at an appropriate si gnificance level [1].

Another adhoc approach is the maximum likelihood approach (2] in wh i ch

we maximize the likelihood function in each class over the allowable set of

parameters and choose that class which has the largest maximum likelihood va l ue

• among them. As before the rule Is not always asymptot i cally consistent

and we have no idea of the probability of error g iven the rule. Further it Is

invalid for comparing 2 classes of AR models with different orders, sInce the

maximum va l ue of likelihood function associated with the class with larger
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order is usually greater than that of the smaller order AR class. Similarly

it cannot handle pa i rs of classes mentioned in (P9). The examples (1-4)

bring out the relative meri ts of the various methods.

4. The Maximum Entropy Spectra l Analysis [4,5,10]:

The origina l aim of the MESA approach is to obtain a reliable estimate of

the spectra l density of a process y from its N observations. Instead of assuming

an arbitrary structure for the process, they found a structure for the process

y(.) to maximize the entropy function under the following 2 restrictions

(i) y() is stationary and zero mean

(Ii) All the correlations of the process up to mth order are known, i.e.,

I = O ,...,m are known where = E[y(t)y(t-i)].

The result is an autoregressive structure for the process name l y

m
• y(t) = a. y(t-j) + w(t)

t=I~~ 
-

where w is a zero mean sequence N(O,p) and a1,. ..,am and p are determined from

• the known autocorrelations •.,, i = 0, . . .  ,m. The required spectra l dens i ty is

the S(w)

-iw -1mw 25(w) = p/ 1 - a 1e ... - a~~

In practice , •. are not known and hence we replace them by the correspond i ng

emperical correlation coefficients computed from the N observations y(1),...,

y (N) .

- 

• 
The key choice in the method is the integer m. The method does not suggest - - -

a method for the choi ce. The maximum value of m is N. Typically m can be O.1N

or O.2N. The va l ue of integer m is increased till the estimated spectra l density

shows sufficient resolution in the required frequency range.

• On the other hand , if we use the approach of Section III for the selection

• of m , we have all the advantages of MESA method and the additiona l information 
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such as the posterior probability of C 1 be i ng correct class , an estImate of

the variance of spectra l dens i ty estimate etc. which are not available in MESA.

In particular we can choose the decision rule to minimize errors in the

estimation of spectral density as ind i cated in Section IV .

We will give 4 examples to illustrate the relative behavior of the various

methods of comparison . In all the exampl es, the test observation set is C =

(y(I),...,y(N)). If C. is the class , the correspond i ng residua l variance is

and the correspond i ng signa l variance Is Pf1. C 1 
‘
~r C~ means that the

decision rule prefers the class C 1 to C~ when the associated conditions are

satisfied and the reverse if the conditions are not satisfied . The function f~ (y)

is chosen as mentioned in (Al).

Example 1: This example is used to illustrate the emp irical ly observed fact that

models wh i ch i nvolve the estimation of a large number of parameters are usually

inferior to appropriately chosen models i nvolving a small number of parameters,

even though the larger parameter model may result in zero residual variance .

• Specifically the 2 classes are

C 1 = {f1 (y) = y+k, g1, m 1 
= 0, n 1 

= N}

C2 
= {f 1, g2, m 1

= 1 , n2 
= 2)

g 1 (t ,~) = 01 +

g2(t,y(t 1),0) = O
~ 

+ 0~y(t—1)

where l ,$1 (t) •2
(t)... are a set of orthogona l functions orthogonal over t

[l ,N]. They can be polynomials or sinusoids. C2 is the class of first ordiir AR

models. Since our data set C has N observations , p 1, the residua l variance of the

best fitting model in class C 1 is zero. Let Pf1 = Pf2 = Py = empirica l variance

of y(~) .

a

I ~~ 

-••— —•-- - - - • •~~~~-—- - • - • -~~~~
•
~~~~~~~ --
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We can assume >> P~,,/N. Decision rule (4.2) yields

C2~~ C1~ lf - (N-2) in - 2 In N - 2 In P~, > -N lfl(Py/N) 
— N In N - •

Retaining terms of order 0(l) and higher , we get

C2 ~ C1 if p,~,/p2 > exp[(2 In N)/(N—2)]

For instance , if N = 100

C2 
¼
f C 1 if p2 < .91 p~

i.e., as long as the first order AR model explains about 9 percent of the

signa l variance , the AR model class is superior to the class of models with H

polynomials , inspi te of the fact that residua l variance p 1 = 0. The superior i ty

of first or second order AR models to pol ynomial or orthogona l function models

in modeling many (but not all) empirica l series is well known to the workers

dealing with empiri ca l model building beginn ing with the work on sunspot series

[9]. However the superior ity of the AR mode l was demonstrated by an elaborate

• procedure like comparing correllograms and other validation methods [I]. In

contrast the present theory offers a rela tively simple quantitative explanation

of this phonemenon.

Note that the conclusion is the same if we had compared C 1 wi th any other

class C
3 
of models i nvoiv lng 2 parameters, say, the class of models involving

only 2 orthogona l functions , i.e., C
3 

is the class of all straight line fits

to the data in the plane [t ,y(t)] and C 1 is the class of pol ynomial fits.

As before, we should prefer the stra i ght line fit if it explains at least 9

percent of the si gna l variance in preference to the pol ynomial fit wh i ch yields

zero residua l variance .

Example 2: We compare 2 classes C4 and C
5 

having same a1, but differ In f~ and

possibly in g..
• I

_ _• - • • • • • • •~~ _ _— ~~~- --
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C4 = {f4, g4, m, n)

C
5 
= {f

5~ 9~, m, a)

f4(y) = y + k1, f5
(y) = in y + k2

Let Pf4 = empirica l variance of y(1),. . . ,y(N)

P f5 
= empirica l variance of lny(l),...,lny(N)

m y = empirica l mean of lny(l),...,lny (N)

By decision rule (4.2)

N 1n (P f4/Pf5)C5 ( C4 if ln(p4/p5
) > 2 1ny (~

._
~.) +

N-rn

Note that the decision rule asymptot i cally does not depend on N explicitly.

(It depends on N via p
1 etc.).

• As a particular illustration of this family of problems , let us determine

• whether a norma l distribution or a log normal distribu tion is appropriate for

representing the given observation set. Thus

C4 
{f 4, 94~ ‘U = 0, a = I)

C
5

{f 5,g 4, m = O , n = l }

f4(y) 
=y + k1, f5(y) = m y +

g4(t,0) = 0~
, g

5
(t,0) = 01,

Here p
4 
= Pf4~ P5 = Pf 5 .

The decision rule (4.2) simplifies into

C5)~ C4 if ln (p f4 /p f5) > (2 T~~)/(l + 1/N)

The simplicity of the decision rule should be compared with the corresponding

• compl exity in using hypothesis testing methods. Us I ng the hypothesis testing

given data . All we can do is compare whether the norma l distribut ion (~, Pf4 ) Is
~~~~~ approach, we cannot directly compare the norma l and log distrIbution fits to the

• •~~~ • —

J —---__ --~~~
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a good fit to the empirica l distributIon of the dataset at the 95 percent

significance l evel. Al ternativel y we can test whether the log normal distrIbu-

tion (1n~~, Pf5) Is a good fit to the emperica l distribution of y(l),. ..,y(N).

It is not difficul t to construct examples In wh i ch we can find both the normal

and log normal fits are significant at the 95 percent signIfIcance level.

ExampLIe 3 :  (Autoregressive processes) We will compare 2 classes of autoregres-

sive models of orders n
6 and n

7 
respective l y.

C~ = {f, g~ , n~, ~~~ 
I = 6,7, n7 >

f(y) y, Pf = empirica l variance of y

V09. (t ,O) = (y(t—l),...,y(t-n 1))

Let N >> n6, N >> n
7 

and p 1 >> Pf/N~ i — 6,7

Decision rule (4.2) yields:

C
7 ) c6 if

-N In p
7 

— a
7 

ln(Pf/P7
) — n

7 
ln N >  -N l a p 6 

— a
6 

ln(Pf/P7) 
- a

6 
In N

(n n6)[ln N + ln(Pf/P6
)]

i.e., C
7> 

C6, if ln (p6/p7)> N - n
7 

(5.1)

If p6 and p~ are not too far from each other

ln(p6/p7
) (p 6 p

7
)/p

7

i.e., we should increase the order of AR model from n6 to n7 
only If the

fractiona l decrease in variance Is greater than the quantity on the RHS of

(5.1). If n
7 
= n6+l , H = 200, (Pf/P6) 2 then RHS of (5.1) = .03155

i.e., we should add another AR term onl y if the fractional decrease In

variance Is at least 3.15 percent.

Suppose we want to use the hypothesis testing approach . Then the decision

• rule has the following form:
• P —Op (n -n )k(n -n ,N )

7~~ 6 P7 N
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where k is a threshold depend Ing on n6-n7,N and the significance level. It is

determined by the fact that if C6 Is true then

N ( C6—C7)/p7(n
7
-n6) 

- F(n6-n6, N)

For N > 100, the threshold depends onl y on (n
7
-n6).

Thus the principle difference between rules (5.1) and (5.2) Is the absence

of the factor ln N and the presence of the nonlinear threshold k in (5.2).

Example 4: Let C. denote class of AR models of order 1 In wh i ch n 1 — I. Our

Intention is to show that the decision rule given by hypothesis testing (I.e.

rule (5.2) is intransitIve (i.e. it does not obey P2). Let p 1 denote the

residua l variance of class C1. Let N = 100. Suppose we choose 95 percent

si gnificance l evel.

• k(l , 100) = 3.84 = k1

k(4, 100) 2.38 = k4
We will presentl y show that the nonlinea r dependence of k(n1, n2) on n1 is the

cause of the intrans itivity.

• If we compare C 1 and C 1~ 1, (5.2) yIelds

N(p -p ) < k ~~
> choose CI 1+1 — I I (5.3)p

1+1 > k1 => choose C
1~~1

Suppose we compare C 1 and CI+4

- I 
N(p

1
-p

1~~4
) < k4 ~~

> choose C~ (5.4)

~~i+4 
> k

4 ~~ choose C.~4

Suppose the numerica l va l ues of p 1, I = l ,2,...,5 obey the following relations

(5.5) and (5.6) which are not InconsIstent

4k p k
(5.5)

I’ P5 “

H 
k

~
i ”
~
I+1 < 1V~ 

I , I = l ,...,4 (5.6)

• - I

_ _  _ _  _ _  
•__________________ ______________ ~~~~~~~~~~~~~~~~~~~~~~~ _ • ••• —— • - - • ——
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The decision rule (5.4) and the left hand side of Inequality (5.5) imply

(5.7)

(5.7)

Decision rule (5.3) and eq. (5.6) imply (5.8)

C 1 ~ C 1~ 1 , I = l ,...,4 (5.8)

Repeated use of (5.8) Implies (5.9)

C1 ,~ 
C
5 (5.9)

Eq. (5.9) and (5.7) mutuall y contradict each other showing the Intrans ltivity

of the decision rule (5.2).

Note, however , that the decision rule (5.1) Is not intransitive since it

does not involve any arbitrary threshold.

VI. CONCLUSION

We have developed a method of comparing different classes of dynamIcal

models using Bayesian theory. The method can handle a wide variety of

cl asses and is much superior to the traditi ona l methods of compar i son l ik e

• hypotheses testing. The method clearl y shows the limitatio ns of models such

• as polynomi a l f its wh i ch usin g a l arge number of parameters can render the

residual variance zero. It clearly shows that such models have no explanatory

• 

power.

i~~4r

_ _  ~~—---- --- -~~--- — — —~~ -- -~~~-----~~~ ~~~~
-- 

~~~~
— ---
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Appendix 1

• We will establish theorem 1 in 3 steps. We wIll first state l emma I which

g ives an express ion for P(C 1 IC) us i ng only the assumptIons (A1)-(A10). We shall

state l emma 2. Using lemma 1 and lemma 2, and the additional assumptions (All)—

• (A13), we will prove theorem 1. Next, we w i l l  es tab li sh lemmas 3, 1 , 2 successivel y,

lemma 3 being required in the proof of lemma 1.

Lemma 1:

Under the assumptions (A1)—(A1O) , the posterior probability of P(C i JC) has

the fol lowing expression

P(C 1 IC) k exp[0.5h.(C) + 0(1/N)], I — 1 ,...,r (I)

where

h
~
(C) = 2nA . - (N—m1)1n8 1 

- n 1 in N

+ ln(det S1/det ~~ 
- ln det R 1 + 2ln p(C1 ) + b1, (2)

b
~ 
= m

1 
— (f. (1),... ,f1 (m1 ) )R ~

1 

~~ 
(1), ...,f1 (mj ) ) T (~)

• A . = (1/N) ~~d In f1 (y)/dy~~_~(~) 
(4)

= + (l/(N-m.)(~)
TS~~ö (5)

0* - 001 = ~~ z1 (t-l)(f1 (t) 
- zT(t-l)001

) (6)
tm.+l

N
— [S~ + ~ z1 (t—I ) zT ( t— l )] 1 (7)

t—m 1
+1

= S3 (N-m1) 
(8)

• — (1/(N—m1
) )  ~ (f 1 (t) 

— zT (t—1)o )
2 (~)t=m 1+l-

z1 (t—l) V0g(t,y(t—l),.. .,y(t—m 1 ),0) (10)

H

I
U ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Lemma 2:

Under the assumptions (All) and (Al2) I3~ i n (5) w i l l  simpl i fy as follows

— p
1 

+ (Pf1 P 1)/(N—m1
) ( I I )

where

~fi 
- 1/N ~ (f 1 ( t) ) 2 (12)

t—1

Proof of Theorem 1:

Let us first use the expression for 
~~ 

In (All) wh ich simplifies 
~ 

In
(7) as follows

Si S01/(N—m 1+1) (13)

we can use (13) to simplif y the expression ln(det S1/det Soi ) occurring in (2).

UsIng (8) and (13), we get
- (N-rn )

in det S1 
- in det S01 — ln det[S01 N—m 1+l~ 

— in det S01

— n ln(N-m
i
/N_m

i+l)

-n/(N-m 1) — 0(1/N) (14)

Next, let us use assumption (A13). Then b 1 In (3) simplifIes Into (15)

- m 1 
- (f 1

( t) ) 2/Pf1 ( 1 5)
t—I

clearly E[b 1 IC ,] — 0.

Var iance (b 1 IC 1 ] — 2m1• 
Moreover, (A13) Implies in det R 1 = m 1 in Pf1 (16)

Substitut ing (II), (l4)—(16) in (2), yields theorem I. Q.E.D.

We need the following lema 3 to prove l emma I. To simp lif y the notati:n,

we will drop the subscript i hereafter, i.e., denote m 1, ~~ 
p

1 
etc. by m, B ,

p etc.

4.- ,

1.
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Lenuna 3:

N
1 (f( t) — zI(t_l)0)2 + (0_0 )T5 1 (0_B )t m+1 0 0

= (e_o *)Ts
_ l

(o_e *) + (N—m)8 (17)
Proof of Lemma 3: Let ‘~~

N
I ( f ( t) — zT t_l)o)2 + (0_00)

T5 ‘(e—eo)t=m+1 0

= Z ( f ( t) - zI(t_l)e* + zT t_l)(o*_e))2
tn* 1

+ (o_o * + ö)Is~~(o_o * +

Expand i ng the squares and rearrang i ng terms

N
LHS of (17) = [(0*_0)T( ~ z(t_1)ZT(t_l) + S~~)(e*_o)]t m+1

+ 
~~ 

( f ( t) - zI(t~ 1)0*)2 + (ê )s~~ö]t m+l

N
• + [2(0*_0)T( 

~~ z(t-l)(f(t) — zT t_l)O*)_ S~~Ô}), (18) 
-

•

t m+l

CoeffIcient of (o~ -o)~ in (18)

I z(t-1)f(t) - 1 z(t~l)z(t_l)O* - s 1e
• t ni+l t m+l

N NI z(t—l)(f(t) — zT(t_l)0
0) 

— 
[ z(t—1)zT(t—l) + S~~]öt m+1 t m+i

— 0 , by definition of ~ In (6) and ( 7) (19)

- _ _ _ _ _ _  ~~~~- _ -

~~~ 

-- _ _ _ _ _ _
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Substitute (19) in (18) and rewrite R.H.S. of (18) usIng defini tion of 6 In (5)
and (9) .  We get

LHS of (17) — RHS of (17).
Proof of lemma I:

Recall F;1 
= {y(1),.. .,y(m 1)), ~2 — {y(m1+l),.. . ,y(N)}.

Let k = lT (df(y)/dy)~~_~(~) (20)

We will first compute p (F;21F ;1,p ,C)

p(F;2 k1,p, C) f dop(F;2k1,O ,p,C)p(OIp,C ,F;1)

f d~p (F;2~F;1,0,p,C)p(o~p,C), by (A7) (21)
N4 k I d~OI (N- J/2 exp [-l/2p) I (f(t) - zT(t-l)0)2]

(2np ) ‘U t=m+i
• 

(2~~~
’
~ (Oct S0p)

112 exp(- ~~ 
(e_o

0)
Ts~l (000)]~

us i ng (2.4) and (A9).

= kf d ia l 
(2 )(N fl1+fl)Th (Oct s~) 

exp[-(1/2p)

{ 
~~ 

( f ( t) — zT(t_l)e)2 + (o..e0)
Ts~

l (o_o
0)}], by rearrang i ng terms

t=m+l

= k f d i o l  
(2~~) IN fl*flV2 (Oct S0) U2 exp[_ (l/2p)(O~e*)

T

~— 1 (o...o*)] exp (—(l/2p) (N—m)6] (22)

using l emma 3.

— k 
(2~~)~~~

m)fl exp[-(l/2p)(N-m)6],

• Now we wIll Integrate over p after mul tipl ying by p(pJC) given by (A8)
p(F;2k1,C) = J dp p(p (c)p(F;21F ;1,p,C)

= f dp 
~ (2, 1 ) (N-m)12 

0:t S0
1 2  exp [-(1/2p ) (N-m)3J

• I : • - - - - --- - -•---~~--- •
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— 2ka fdx exp(~x
2(N~m)6/2)]x~~”~~ (Det S/Oct 5 )

1/2/( 2 ) (N-m)/2~

us Ing the transformation p = i/x

= ak[(N_m)B/2]~~~~
m)
~
2 F[(N-m)/2] [Det S/Oct

Simplify the above express Ion using the expression for k In (20) and the standa rd

formula for F(x) namely:

inF(x) — x in x - x + 1/2 1n(2ir/x),
N

2 In p(F;2~F;1 1 C) — 2  in ~ + 2 ~ in f’(t) — (N—rn) in 8 — (N-rn)
t m+1

+ lrt(4ir/ (N-m)] + ln(det S/det - (N—rn)ln2-,r , (23)

S is of the order 0(1/N). Hence we can define ~ — S(N-m) , so that ~ is 0(1).

det S = (det 
~~~) 

(l/N_ m) n (24)

By assumption (A6)

2 in p(F;1 1C) - m ln  2w - In det R + 2 ~ in f’(t) 
- II(f (i) ,..., f (m) Ii~-l

t— 1
(25)

2 in p(F;~C) — 2 In p(F;2k1,C) + 2 ln p(F;1 JC) (26)

N
~ in f’ (t) — (N—rn) in B — (n+l) in (N—rn)

• t 1  
H

+ ln(det ~/det 
- in det R + m - IIf (l) ,..., f (m) lI~ -1

- N ln 2w — N + 2 m c i  + ln(4ir) , us ing (23) and (25) ,

(27)

ln p(C ~) — 1n p( F;JC ) + in p(C ) - ln p(F;)

0.5h (F;) + terms i ndependent of any class + 0(1/N)

(28)

where
N

h (
~

) — 2 1 in f ’ (t )  — (N—rn) 1n8 - n ln N + ln(det S/det
t—1

• 

— ln det R + 2 1n p(C ) + (m — h f  (l),...,f (m ) h I ~—1

_
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Proof of len-ma 2:
N

Recall Pf =( 1IN—m) I (f(t) - zT(t_l)0
0)
2

• t=m+l
Recall that

N
p “ (i/N—rn) 

~ (f(t) — zT(t_ i)o *)2
t’m+ 1

N
(l/N—m) I (f(t) _zT(t_l)0

0 
— z

T(t_l)~ )
2
, by defini tion of ~ in (6)t m+l

N N“ (I/N—rn ) I (f(t) - z
T(t_i)0

0)
2 

+ (~)
T
(i/N ) ~ z(t_1)Z

T(t_l)Ôt m+l t—m+l

T N
— 20 

~ z(t—l) (f(t) — zT(t 1)0
0
)/N_m

-~~~ t=rn+l

Substitute for the coefficient of ~ in the last term us i ng (6), replace the first
term by Pf and rearrange the terms .

P = Pf + ~
T(l/N_m 

~~ 
z(t_i)zT(t_l) - 2S~~/N-m)~t=rn+l

Pf + (ö) TS~~ö ( l  - 2(N—m+1)/N-rn)

or ëTs 1
~ = (Pf 

- p)/ ( i  + 2/N—rn)

(Pf p)O — 2/N—rn)

By definition of 8 in (5),

8 P +(l/N—m) (ö)Ts l o

p +(1/N-m) (p - p) + 0(1/N)
4.

_  -i
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Appendix 2

We will outline the p roof of theorem 2:

Let (f 1, g~, 
0~(N), p~ (N ))  ~ C~, I = 1 ,2, be the best fitting models for

the 9iven data in the 2 classes C1 and C2, 8~ , p ,  etc., be i ng defined in

Section III. We will assume that e~ (N) and p
’
~(N) tends to 0~ and p 1 

as N tends

to Infinity with probability one. In view of the assumptions (Al)-(A7), the

models In each class are identifiable given the class. Hence 
~
1 2~ ~~~~ 

O2~ ~~
the asymptot i cally recovered model is the exact representation of y(~) stated in

the theorem. Note that by definition , y(~) does not obey the model (f1, g 1, 0l~

~1)~ 
Rather , this model is the best fitting model in C 1 for the semi infinite

data set {y(l),y(2),.. .}.

Recall that

• 
ln [p(C21F;(N)/p(C 1 1F;(N))] = o.5[h2(F;(N)) 

- h 1 (F;(N))] (1)

Cases (i) and (ii)

Without any loss of generality , we can set f1
(y) = f 2 (y ) = y +

~1 (tJt—1 ) = one step ahead predictor of y(t) based on y(t-j), j > 1 suggested

by the model (f1, 
~l’ ~~ 

p 1)

= g1 (t ,e) — k
1 

(2)

E[y(t) Iy( t—j), j > 1] = g2 (t ,~ 2) —

By definition of expectation and normality of y

E[y(t) — 

~1 ( t I t — i ) ) 2] > E[(y( t )  — 

~2 (t I t—l )) 2]
I.e., p 1 > p 2
At this point, we will discuss the cases (I) and (ii) separately.

Case (I): The structure of g 1 and g2 mentIoned In this case imply (3)
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Lim 
~~ 

1n[P(C21F;(N))/p (C 1 k(N)fl

(h2 (F;(N)) 
- h ( F ;( N))

Lim O. 5
N-*o InN

= Lim 0.5 {—N in + N in + (n 1 —n 2)ln N + 0( 1) )
N-~ l n N

= Urn 0.5 {-N in p
2 

+ N ln  p
1 + (n1 -n2)In N + O(l)}, since ~ 

p 1 and

p2 +p 2 
w.P.I. L

(n1-n2)/2, by (3)

or (P(C 2IF;(N))/P(c 1 tF;(N))
1”1’

~ 
-~~ exp(~2

”2),

~n Case (ii): L

> p2
or p 1 

= p2 exp [k 3], k3 
> 0

Lim 
~ ln[P(C21F;(N))/P(C1 1F;(N))] 

= Lim (in p 1 - in p
2
) = k

2 
> 0,

N~~

or (P(C 2IF;(N))/P(C1 IF;(N))~~~ 
-
~~ exp(k3

] ~ k2 > 1

Case (iii) :

Without any loss of generality we can set f1 (y) = y + k 1
Define y1 (tjt—l ) as in (2).

By definition

p
1 ~ E((y(t) — y 1 (t~t—l ))

2Iy(t—j),j > 1]
2> E[{y(t)  — E(y(t))Jy(t—j),j > l)}  ~y( t—j ) ,j  > 1] (14)

Let f2(t~t—l ) = E[f(y(t))~y(t—j),j > 1]

= g2 (t ,02) •

Since the conditiona l distribution of f(y(t)) given y(t—j),j > 1 is norma l,

• we can use condition (BI) and rewrite it as follows :

~~~~~~
. _~._ :(

‘I
I

-~~~~~~~~~~~~~ ~~~~~ ——-•~~~~-—-~~~~~~~• • • - --•~~~~• -~~ - -~~- ~~~~~~~~~~-—~~~~•
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E[(y(t) — E(y(t)~y(t—j),j > l))2~y(t—j),j > I]

> E[(f(y(t)) — f2(tlt— 1))
21y(t—j),j > i]/exp[2E(ln f’(y (t)Iy (t—j),

• j > i ) ]  (5)

Using (4)

ln p 1 > in E[{y( t )  — E(y(t)~y(t—j),j > l)}2~y(t—j),j > 1

> l t ~i p2 2E(ln f ’ (y (t ) )j y ( t — j ) ,J  > 1)]

us i ng (5) and definition of p2
> in p2 2E(in f ’ (y (t ) )  (6)

Urn 
~~
. ln [P(C21F;(N))/p (C1 1F;(N))]

-

• Lim (0.5 (h2(F;(N)) 
-

N-~

N
Lim [2(1/N) I in f’(y(t)) - in  p 2 + in p 1 + 0(log N/N)]2

> k
3

> O , by (6)

or

((P(C2IF;(N))IP(C 1 IF;(N)
I
~
’N - exp[k

3
], for large N

S


